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Languages come in different forms but have shared meanings to convey. Some meanings are expressed by sentence structure
and morphologic inflections rather than content words, such as indicating time frame using tense. This fMRI study investi-
gates whether there is cross-language common representation of grammatical meanings that can be identified from neural
signatures in the bilingual human brain. Based on the representations in intersentence neural similarity space, identifying
grammatical construction of a sentence in one language by models trained on the other language resulted in reliable accu-
racy. By contrast, cross-language identification of grammatical construction by spatially matched activation patterns was only
marginally accurate. Brain locations representing grammatical meaning in the two languages were interleaved in common
regions bilaterally. The locations of voxels representing grammatical features in the second language were more varied across
individuals than voxels representing the first language. These findings suggest grammatical meaning is represented by lan-
guage-specific activation patterns, which is different from lexical semantics. Commonality of grammatical meaning is neurally
reflected only in the interstimulus similarity space.
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Significance Statement

Whether human brain encodes sentence-level meanings beyond content words in different languages similarly has been a
long-standing question. We characterize the neural representations of similar grammatical meanings in different languages.
Using complementary analytic approaches on fMRI data, we show that the same grammatical meaning is neurally represented
as the common pattern of neural distances between sentences. The results suggest the possibility of identifying specific gram-
matical meaning expressed by different morphologic and syntactic implementations of different languages. The neural real-
ization of grammatical meanings is constrained by the specific language being used, but the relationships between the neural
representations of sentences are preserved across languages. These findings have some theoretical implications on a distinc-
tion between grammar and lexical meanings.

Introduction
Different languages share communicative intentions, while
the linguistic forms expressing similar meanings may vary.
Research over the past two decades has characterized how the
human brain represents content words and their compositions
in unprecedented detail (Mitchell et al., 2008; Bemis and
Pylkkänen, 2011; Wang et al., 2017; Coutanche et al., 2020;
Tang et al., 2023). Concepts of concrete objects and simple
events are found represented by brain activation patterns that
are common across different languages (Correia et al., 2014;
Yang et al., 2017), indicating shared neural substrates for con-
tent-word-driven semantics.
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On the other hand, certain meanings arise from morphosyn-
tactic properties rather than content words (Goldberg, 1995). In
sentences “I have walked my dog” and “I am walking my dog,”
different tenses and aspects indicate different time frames of the
event. In Mandarin Chinese, time frame is expressed by using as-
pect markers such as “了” or adverbs such as “正在.” Are these
grammatical meanings, namely, meanings expressed by sentence
structures, inflectional morphology, or function words, repre-
sented in common neural substrates across languages in a bilin-
gual brain? While neural responses associated with different
grammatical constructions have been identified (Allen et al.,
2012), what remains unaddressed is whether such neural differ-
ences result from differences in formal linguistic structures, or
from differences in grammatical meanings, such as the subtle
semantic distinction between the ditransitive and the dative con-
structions (Pinker, 1991; Goldberg, 2003; Ambridge et al., 2012).

Because grammatical meanings are coupled with the specific
morphologic and syntactic properties of a specific language, the
present study uses different languages to identify the neural sig-
nature of meaning to dissociate it from formal syntactic proper-
ties. The question is whether the same grammatical meaning is
represented by the same spatial neural activation pattern in dif-
ferent languages. One possibility is that particular grammatical
meaning is encoded directly as particular neural activation pat-
tern, just like lexical semantics is represented by concept-specific
activation patterns regardless of the language (Buchweitz et al.,
2012; Yang et al., 2017). If this is the case, it will be possible to
identify grammatical meaning of one language based on the spa-
tial patterns in another language.

A second possibility is that unlike lexical semantics, grammat-
ical meaning is only a by-product of the representation of formal
linguistic structure. In the view of generative grammar, the sets
of parameters, or instantiations of the universal grammar, are
different across languages, resulting in different syntactic struc-
tures (Chomsky, 1965, 1986). If generative mechanism is the

only route to grammar representation (Marantz, 2005), we infer
that the same grammatical meaning is not represented by the
same neural activation patterns in two languages that do not share
specific rules (using different “sets of parameters”). As long as the
grammatical meanings are the same in two languages, one will
observe between-language commonality in the second-order inter-
sentence neural similarity space, where the intersentence similarity
is the similarity of the spatial pattern of neural responses between
pairs of the sentences within a language (Kriegeskorte et al., 2008;
Haxby et al., 2020). Assume when a common grammatical mean-
ing (Fig. 1a) is expressed in two different languages, the relevant
grammatical properties in the two languages are neurally coded
by different spatial patterns (Fig. 1b), resulting in different neural
signatures of sentences with common grammatical meanings in
different languages (Fig. 1c). Grammatical meaning cannot be
decoded across languages by directly comparing the spatial pat-
terns, but consistency will be observed when one compares the
neural similarity patterns across sentences within a language with
the similarity pattern of another language (Fig. 1d).

The present study investigates the neural representation of
grammatical meaning by examining common grammatical mean-
ings in different languages. We associate grammatical meaning
with neural representation of sentences in neural similarity space
or in voxel space, and test whether the learned mapping can be
used to predict the neural signature of a sentence in one’s second
language given its grammatical meaning. This approach is applied
to ensure the cross-language commonality can be accounted for
by the hypothetical features of grammatical meanings, and to
ensure that the learned mapping is generalizable to new sentences.

Materials and Methods
Participants
Forty healthy young adults were originally recruited from the East China
Normal University community. One participant quit the experiment
halfway, resulting in a total of 39 participants (25 females, age averaged

Figure 1. Conceptual illustration of common cross-language representations of grammatical meanings in neural similarity space regardless of commonality in the multivoxel activation pat-
terns. a, Assume three sentences, represented by the circle, the pentagon, and the triangle, vary on two grammatical meanings, A and B. The colors in the sentence-by-feature matrix indicate
different values of the elements, namely, the extent to which a sentence expresses a grammatical meaning. While this study codes grammatical features binarily, the features can be continu-
ous. b, The grammatical meaning A or B may be neurally directly coded (upper branch) or via syntax (lower branch). In the second case (lower branch), two actual languages express the same
meanings by different morphologic or syntactic properties, which are neurally realized by different sets of voxels, as illustrated by the blue squares. c, Different hypotheses lead to different pre-
dictions on whether the same grammatical meaning is represented similarly in voxel space across language. d, Nevertheless, the same underlying meaning representation in a can be captured
when the neural representations are viewed in a space spanned by other sentences, i.e., the intersentence neural similarity. The coordinate systems represent the neural similarity space, in
which the dimensions are stimuli and the location of a sentence indicates the neural similarities to other sentences.

7832 • J. Neurosci., November 15, 2023 • 43(46):7831–7841 Wang et al. · How Grammar Conveys Meaning



at 21 years, SD¼ 2.54). Participants’ age, gender, and language back-
ground were collected by questionnaire. Questions on participants’ lan-
guage experience were adapted from the Language History Questionnaire
2.0 (P. Li et al., 2014): “List the languages you have studied or learned, the
age at which you started using each language in terms of listening, speak-
ing, reading, and writing, and the total number of years you have
spent using each language.” English proficiency was indicated by the
self-reported scores on the National College Entrance Examination of
English. All the participants were Chinese-English late bilinguals. The
mean age of onset for L2 was seven years (SD¼ 2.67). All the partici-
pants have been studying/using English for at least nine consecutive
years. All the participants have passed the National College Entrance
Examination of English. All participants provided written informed
consent approved by the East China Normal University Institutional
Review Board.

Experimental design and procedure
This study investigated fMRI-measured activation patterns when
bilingual participants read sentences with nearly identical propositio-
nal contents but different grammatical constructions. Stimulus sen-
tences consisted of 48 unique sentences: two languages (Chinese,
English)� two tenses-aspects (present continuous, present perfect)�
two voices (active, passive)� three emphatic forms (nonemphatic,
agent-focusing, patient-focusing)� two scenarios (Chef-chops-carrot,
Grower-washes-tomato). For example, “It is the carrot that the chef is
chopping” is a patient-focusing sentence in English that describes one
of the scenarios in present continuous tense-aspect and active voice
(Extended Data Fig. 2-1). We chose these three grammatical areas for
several reasons. First, these grammar features exist in both English
and Chinese, i.e., both languages have these parameters “switched
on.” Second, these grammatical constructions are meaningful or in-
terpretable outside the grammar system, as opposed to some other
grammatical areas such as other subject-verb agreement. Third, as
opposed to rules such as subject-verb-object that are common in both
English and Chinese, the parameters of the selected rules, or morpho-
syntactic structures, differ between the two languages, which ensures
the perceptual dissimilarity between sentences in two languages (Fig.
2). Fourth, these three features are orthogonal to each other: manipu-
lating one feature does not affect the validity of the others. Note that
the active and passive voices depicted the same event (e.g., “The chef
is chopping the carrot.” vs “The carrot is being chopped by the
chef.”).

Below we used “grammatical feature” to refer to the features of tense,
voice, and emphatic form, and used “grammatical construction” to refer
to the specific combination of properties of these features in a specific
sentence, such as “present continuous, active, and agent-focusing.”

Before the MRI scans, participants read all the stimulus sentences
and were informed that “These sentences described very similar events,
but please try to comprehend the subtle differences in meanings.” No
participant reported issues regarding the sentences when they were
asked whether the meaning and expression of any sentence were unclear
or confusing. During the scan, participants silently read the sentences
that were presented for a total of three times in six runs, three runs per

language. Each run consisted of 24 sentence trials, a complete list of
unique sentences in one language in a pseudorandomized order. In this
slow event-related design, each sentence was presented one phrase at a
time, with phrases cumulating from left to right on the screen (Fig. 2).
Each phrase contained and only contained one content word (nouns or
verbs), hence each sentence consisted of three phrases. The presentation
duration of each phrase was computed as 600ms � number of content
words1 16ms � number of letters for the English sentences. The pre-
sentation paradigm was motivated by the patterns of eye fixations dur-
ing the reading of texts (Just and Carpenter, 1980). The basis timing of
word display was modified from 300 to 600ms based on preliminary
tests on two late Chinese-English bilinguals to ensure sufficient time
for processing. Because of the lack of corresponding research for the
reading of Chinese, we applied the same equation when determining
the timing of displaying Chinese sentences, i.e., 600ms � number of
content words1 16ms � number of characters. The mean presenta-
tion duration of sentences was 2177ms; SD¼ 208.35. The shortest pre-
sentation duration of a sentence was 1912ms and the longest was
2552ms. This range (640ms) was shorter than 1/3 of the TR. After the
last phrase of the sentence had been presented, a blank interval was
presented to pad out the total duration of the sentence presentation to
5000ms, during which the participants were allowed to finish their
thoughts on the sentence. The blank interval has been found critical for
semantic decoding and has been applied in previous fMRI studies
(Wang et al., 2017; Yang et al., 2017). The blank interval was followed
by a 7000-ms fixation cross (“1”) presented in the center of the screen,
during the presentation of which the participant was instructed to relax
and clear their mind. Participants were instructed to think of the same
properties of the person, object, and scenario described by a sentence
each time the sentence was presented: “For example, when you en-
counter this sentence for the first time, if you happen to imagine the
chef is cutting the carrot in half instead of cutting it into many slices,
try thinking of that kind of carrot again – that is, a carrot in half –
when you see the sentence for the second or the third time.” Twelve
additional trials were included, during which participants were asked
to judge whether the present sentence used the same grammatical con-
struction as the previous sentence. A 17-s fixation trial was presented
at a random position in the stimulus sequence for each run, during
which a “1” was shown at the center of the screen. Participants were
instructed to relax and clear their mind while fixating on the sign.

fMRI imaging protocol
Functional and anatomic images were collected using a Siemens
Prisma 3-T scanner with a 64-channel head coil at East China Normal
University. Functional images were acquired using a gradient echo EPI
pulse sequence with TR¼ 2200ms, TE¼ 30ms, and a 90° flip angle.
Thirty-six 3.5-mm-thick AC-PC aligned slices were imaged with voxel
size 3� 3 � 3.5 mm3 FOV 192� 192 mm2. Structural images were
acquired using a T1-weighted MPRAGE pulse sequence.

Image preprocessing
Preprocessing was performed using SPM12 (Wellcome Department of
Cognitive Neurology, London, United Kingdom). Whole-cortex fMRI

Figure 2. Example of stimulus sentence and schematic representation of the experimental paradigm. The left panel shows one sentence in English and its Chinese equivalent (Extended
Data Fig. 2-1 for all the sentences). Colored texts mark the key components that indicated the each of grammatical features in that Chinese sentence. The right panel illustrates the experimen-
tal design. Participants read sentences silently during six runs of fMRI scans. Each sentence was presented one phrase at a time, with phrases cumulating from left to right on the screen. The
presentation duration of each phrase was determined by the number of content words and number of letters.
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data were corrected for slice timing and head motion. The structural
image of each participant was coregistered to the mean of the functional
image of the first scan session, tissue-segmented and bias-field corrected.
The deformation information of normalizing the structural image to the
Montreal Neurologic Institute (MNI) template was applied to spatially
normalize the functional images. Functional images were then corrected
for linear trend and low-frequency trends by applying a high-pass tem-
poral filter at 0.0078Hz. Further analyses were performed using in-house
scripts on MATLAB7 (MathWorks).

For each presentation of a sentence, the percent signal change
(PSC) was computed at each voxel in the brain image. The change was
computed relative to a baseline activation level measured during and
averaged over the 17-s fixation conditions. The baseline measurement
started at 4 s after each fixation presentation onset to account for the
hemodynamic response delay. The fMRI data of sentence reading con-
sisted of the mean of three images, the first starting at 6.6 s from sen-
tence onset. The PSC was then normalized to a mean of 0 and variance
of 1 across sentences within each run (Pereira et al., 2009) to equate the
overall intensities across scans and participants.

Control of features of no interests
Four types of feature sets that might correlate with the grammatical fea-
tures were considered: presentation duration, visual-orthographic, pho-
nological, and syntactic features. Presentation duration was the exact
duration over all segments of each sentence. The first visual feature was
orthographic complexity, measured as the number of strokes in a
Chinese sentence or the number of letters in an English sentence, both
being normalized within language. The second was number of words in
a sentence. Post hoc examination showed no occipital or ventral temporal
voxels were used in the grammatical coding (see “Distribution of informa-
tive voxels in two languages”), suggesting lower-level visual features were
unlikely to confound the effect of interest.

Phonological features were taken into account despite the visual pre-
sentation paradigm because participants might generate covert speech
during reading, and because phonological working memory demands
might differ on sentences of different lengths. Twenty-five articulatory
features were constructed following the rationale and approach of de
Heer et al. (2017). Sentences were transcribed to phonemes. The occur-
rence of each articulatory feature in a sentence was coded according to
the phoneme-articulation association defined by International Phonetic
Association (https://www.internationalphoneticassociation.org/content/
ipa-chart). These features represent both the speech sound characteris-
tics and the vocal gesture characteristics (de Heer et al., 2017). Note that
this feature set had coded the number of phonemes in a sentence, which
was associated with the verbal working memory.

The first syntactic feature was syntactic complexity, measured by the
node counts in the parse tree of a sentence (Miller and Chomsky, 1963;
Frazier, 1985; Ferreira, 1991). Parsing was performed using the Stanford
CoreNLP toolkit (Manning et al., 2014). The second syntactic feature
was on word order, which binarily coded whether a sentence was agent-
first or patient-first.

Thirty features of no interest were constructed. Because grammatical
meanings were expressed by syntactic properties such as word order,
function words, or inflections, which in turn affected other sentence
properties the sentence length, and complexity, the features listed in this
section were highly correlated with the grammatical meanings within
language by nature. To control for the effects of confounders without
eliminating the effects of interests, we only selected voxels that were bet-
ter accounted for by grammatical features than features of no interest
using the training data. A voxel was only selected for any following anal-
ysis if the grammatical feature set accounted for more variance (greater
R2) in that voxel than the all sets of features of no interest.

Voxel selection
Two-step voxel selection was performed using the training data before
the model training. The first step was mandatory. As described above in
Control of features of no interests, a voxel was retained only if the gram-
matical features could explain extra variance that were not explained by
the features of no interests. Post hoc review showed that after the control

of features of no interests without additional voxel selection, 2055–2535
voxels were modeled over cross-validation folds. The second step was
optional and was referred to as “stability-based voxel selection.” Data of
three presentations of the same sentences in the training set were aver-
aged to acquire a stable representation of the individual sentence. The
sentence of the same grammatical attributes as the test sentence was
ignored, resulting in 22 sentences. For example, if the test sentence was a
present continuous, active, and agent-focusing sentence (“It is the chef
who is chopping the carrot.”), the other present continuous, active, and
agent-focusing sentence that described the other scenario (“It is the
grower who is washing the tomato.”) was ignored. The 22 sentences
formed 11 pairs, each pair being the two sentences of the same grammat-
ical construction (e.g., present perfect, active, and agent-focusing) that
described two different scenarios (one being chef-chop-carrot and the
other being grower-wash-tomato). The grammatical tuning score of each
voxel was computed as the Pearson correlation coefficient on the
responses between the 11 pairs of sentences. This score indicated how
well a voxel presented an activational profile over different grammatical
constructions that were stable across different lexical contents. This
voxel selection method was consistently applied to the following analy-
ses. Results of using a range of different numbers of voxels were pre-
sented in the figures to show the robustness of the results. The numbers
of voxels being selected were arbitrarily set to the rounded values of 30�
1.25n�1, where n was a natural number ranging from 1 to 20.

Predicting grammatical meaning signatures within language
We examined whether the responses in selected voxels to one grammati-
cal construction was distinguishable from those to other constructions
in the same language. A leave-one-sentence-out cross-validation proce-
dure was applied to all the within-language analyses. In each cross-vali-
dation fold, the test image was the mean image over three presentation
trials of the same sentence. The rest 69 trials of 23 sentences were used
as the training data. A kernel ridge regression model (Hastie et al., 2009)
was trained to learn the mapping from the grammar features to the
response of each selected voxel. The independent variable were the
4-dimensional grammatical features. Each dimension binarily coded tense
(present continuous vs present perfect), voice (active vs passive), whether
it was an emphatic or nonemphatic sentence, or for an emphatic sentence,
whether it was agent-focusing or patient-focusing. The dependent variable
was the percent signal change at each selected voxel. The penalty weight of
the ridge regression was chosen from a list of 23 candidate values that
ranged from 10�7 to 107. The selection of parameters was performed using
the generalized cross validation method for computational efficiency,
which implicitly left one training sample out each time to train the model,
applied it to the left-out sample, and calculated the prediction errors. The
regularization parameter that provided the minimum mean squared error
over all implicit folds was selected for each voxel.

The trained model was used to predict the neural signature associ-
ated with each of the 12 candidate grammatical constructions (two
tenses� two voices� three emphatic forms), given its grammar feature
coding. Only the voxels selected based on the training data were consid-
ered. The observed image of the left-out test sentence was compared
with the 12 predicted images. The 12 candidates were ranked based on
their cosine similarity scores to the actual test image. The perform-
ance of the model was assessed by the rank accuracy of correct gram-
matical construction, (Number of candidates � Rank of the correct
item)/(Number of candidates � 1).

For each of the prediction analyses, statistical significance of the
resulting accuracy was determined based on the null distribution gener-
ated by a 10,000-iteration random permutation. The procedure in each
iteration was the same as the main analysis, except that the labels of the
entire data were randomly shuffled before further processing.

Identifying attributes of individual grammatical features
Performances on each of the three grammatical features were examined.
For example, for tense prediction, the predicted images of all the present
continuous sentences were averaged, and the predicted images of all
present perfect sentences were averaged. The test image was compared
with the two mean predicted images. Accuracy was determined by
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whether the predicted image with the correct tense label was closer to
the test image.

Predicting grammatical meaning signatures across language on a
voxel-by-voxel basis
In the voxel-wise cross-language prediction, the model was trained
using PSCs associated with reading sentences in one language, to
identify the grammatical construction of the PSC of each sentence in
the other language. For this and the rest of the analyses, the proce-
dures and algorithms applied were the same as in the within-language
prediction unless specified. Training and testing data in the cross-lan-
guage prediction were associated with two languages respectively.

Predicting grammar meaning signatures across language in neural
similarity space
The model described below used the same training-testing protocol on
the same sets of voxels as the voxel-based model described above. The
neural signature of a sentence in this model was the intersentence simi-
larity, namely, the Pearson’s correlations of the sentence’s percent signal
change image to the images of all the sentences in the same language
that described the other scenario. For instance, if the test sentence was
about “chef chops carrot,” the neural similarity was the correlations of
the test sentence to each of the 12 sentences (including all three presen-
tations) that described “grower washes tomato” (Fig. 3). The images
contained only the voxels that were selected by the voxel selection pro-
cedure. The dependent variable of model training was each of these
neural similarity scores. The independent variables were the 4-dimen-
sional grammar features. The trained model was used to predict the
neural similarity scores associated with each of the 12 possible gram-
matical constructions using the grammar features. The actual similarity
vector of a test sentence was compared with the 12 predicted vectors.
The performance of the prediction was evaluated by the rank accuracy
of the correct grammatical construction over the 12 candidates. In
short, the only difference between this similarity-based model and the
voxel-based model described above was that the neural signature of a
sentence, which was the voxel-wise responses in the voxel-based model,
was now replaced with the neural similarity scores to other sentences.

Modeling neural similarity patterns using language-specific voxel
selection
Voxel selection was performed independently for two languages. The
selection procedure remained the same for the training data. For the test

data, when one sentence was tested, the voxel selection was performed
using all the other sentences of the same language as the test sentence
and then applied to the test data. Note that the prediction was always
performed independently on each test sentence, thus the data used for
voxel selection were never involved as test items in this procedure.

Testing the role of features of no interests in explaining signals in
selected voxels
This test was to further examine whether the select voxels were associ-
ated with the features of no interest. If the classification accuracy of
grammatical meaning was contributed by the correlation between the
confounders with grammatical meanings, these confounders should be
able to predict the neural responses just like the grammatical feature vec-
tor did. This analysis applied the same procedure as the main analysis,
except that the grammatical vector in the training and prediction was
replaced with the 30-dimensional vector of features of no interest.

Language difference and individual differences in spatial patterns
Each participant had two binary maps of voxels being used in the model-
ing, one per language. The mean of cosine similarity between the maps
of each pair of participants within a language was used as the estimate of
intersubject similarity. Random permutation test was performed to com-
pare the intersubject similarity between languages. In each iteration of a
random permutation, the L1/L2 data label were randomly shuffled for
each participant. If there was no systematic difference between languages
(the null hypothesis), the intersubject similarity in the shuffled category
would be statistically the same as the intersubject similarity within the
real language category. The intersubject similarity in each shuffled cate-
gory computed for 10,000 iterations formed the null-hypothesis distribu-
tion. The actual intersubject similarity within each language was test
against the null distribution to obtain a p value.

Locating voxels that represented grammatical meanings in two
languages
Post hoc examination showed when 437 voxels were selected in each par-
ticipant in each language and included in the modeling, the mean accu-
racy across L1-to-L2 and L2-to-L1 directions was the highest among a
range of numbers of voxels. Multikernel density analysis (Wager et al.,
2009) was performed to identify voxels that were consistently selected
across participants. Because the images were originally not smoothed for
the purpose of retaining the spatial pattern of image, here the voxels
were convolved with a 2-mm Gaussian kernel. For each language, a

Figure 3. Illustration of methods of identifying grammatical construction in neural similarity space. When a chef sentence was left out as the test sentence, similarities of the activation pat-
terns were computed between the other chef sentences and the grower sentences. The chef sentences served as the training exemplars and the grower sentences served as the neural feature
space. Weights (w) that mapped the grammatical features to the neural similarities were learned and applied to generate predicted neural similarity patterns of 12 possible grammatical con-
structions. These predicted candidate patterns were compared with that of the test sentence. Normalized rank of the similarity of the actual construction over all candidates indicated the per-
formance of the identification.
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probability map was generated by averaging the convolved maps over
participants. Null distributions were estimated by Monte Carlo simula-
tion, in which the selected voxels were randomly located in the brain
over 5000 iterations. The observed probability maps were then thresh-
olded against the null distributions and corrected for multiple compari-
sons at p of 0.05.

Laterality differences in representing grammatical meanings in two
languages
Laterality index (LI) of informative voxels within a language for each
participant was computed as NL/(NL1 NR), where NL was the number
of voxels selected in the left hemisphere and NR was the number of vox-
els selected in the right hemisphere. LIs were computed at the whole
brain level and within individual regions of interests using Automated
Anatomical Labeling (Tzourio-Mazoyer et al., 2002). These regions have
been consistently found responsive in various semantic tasks by meta-
analysis (Binder et al., 2009) and were found consistently informative in
the current study, namely, inferior frontal gyrus (pars opercularis, pars
triangularis, and pars orbitalis), middle temporal gyrus/superior tem-
poral sulcus, and the inferior parietal cortex (angular gyrus and supra-
marginal gyrus). For the within-region tests of LI differences between
language, Bonferroni correction was applied to correct for the multiple
comparisons.

Results
Predicting grammar-modulated neural signatures across
language in voxel space
Voxel-wise cross-language prediction was performed to test
whether the spatial activation patterns were similar between the
sentences in different languages with common grammatical

meanings. Activations of a voxel over sentences in one lan-
guage were modeled by the vector of grammatical features.
The trained model was tested by comparing the actual activa-
tion pattern of a sentence in the other language against the
model-predicted signatures of all the possible candidate gram-
matical constructions. When all the voxels that were better
explained by grammatical features than by all features of no
interests were used, the mean accuracy of L1-to-L2 prediction
was 0.56, not significantly higher than the chance-level accu-
racy (p¼ 0.15). The mean accuracy of L2-to-L1 prediction was
0.65 (p¼ 0.009). The significances of the accuracies were sta-
bly marginal when the different numbers of voxels were
included, particularly for the L1-to-L2 prediction (Fig. 4e).
Further investigation of the L2-to-L1 results suggested that
the overall above-chance accuracy was likely to be mainly con-
tributed by the emphatic form predictions: The accuracy of
identifying emphatic versus nonemphatic sentences was 0.71
(p¼ 0.0023) and the accuracy of identifying agent-focusing ver-
sus patient-focusing sentences was 0.69 (p¼ 0.06; Extended
Data Fig. 4-1c). These results suggested the representations in
one language were not voxel-wise aligned to another, at least
for the grammatical features of tense-aspects and voice.

Predicting grammar-modulated neural signatures across
language in neural similarity space
We then examined the possibility of characterizing cross-lan-
guage common representation of grammatical meanings based
on intersentence neural similarities. As a secondary, higher-order

Figure 4. Results of using predicted neural signatures to identify grammatical construction of sentence. a, Rank accuracy of cross-language identification of grammatical construction using
neural similarity patterns (accuracies of identifying individual grammatical features were in Extended Data Fig. 4-1). Selected voxels were consistent across participants and languages. The x-
axis indicated the number of voxels being used in the prediction. The “All” condition was when all the voxels that were better explained by the grammatical features than by the features of
no interest were included. The dotted line indicated the most conservative critical value across models using different numbers of voxels (p¼ 0.05). b, Rank accuracy of cross-language identifi-
cation of grammatical construction using neural similarity patterns. The similarity patterns were computed using subject-specific voxels. For easier visualization of the comparison between
Figure 4a and b, see Extended Data Figure 4-3. c, Rank accuracy of cross-language identification of grammatical construction using neural similarity patterns. The similarity patterns were com-
puted using subject-specific and language-specific voxels. d, Rank accuracy of identifying grammatical construction within language in voxel space. e, Rank accuracy of identifying grammatical
construction across language in voxel space. At individual participant level, most participants with reliable within-language accuracy showed chance-level accuracy in voxel space and above-
chance accuracy in similarity space for cross-language prediction (Extended Data Fig. 4-4). f, Overlap rate of voxels being selected in two languages for identifying grammatical constructions.
Each boxplot represents the distribution of all the participants. The overlapping voxels were sporadically located in multiple brain regions (Extended Data Fig. 4-2).
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representation, interstimulus similarity can reveal the common
representational pattern over different languages, regardless of
whether the specific neural spatial patterns are the same or differ-
ent across languages (Fig. 1). In this model, the neural signature
for each sentence was a vector of its neural similarities to other
sentences in the same language that used a different set of con-
tent words (Fig. 3).

The mean of the rank accuracy across sentences for cross-lan-
guage prediction was reliably above chance level, being 0.67
(p¼ 0.0025, null-hypothesis distribution derived from 10,000
random permutations) when using model trained on first lan-
guage (L1) to predict second language (L2) sentences (L1-to-L2),
and being 0.69 (p¼ 0.0003) when using L2-based model to pre-
dict L1 sentences (L2-to-L1). Different models were also trained
and tested on selected subsets of voxels. Additional stability-
based voxel selection was performed in each cross-validation
fold, which computed the signal correlation over pairs of senten-
ces that were of the same attributes of tense, voice, and emphatic
form but different content words (see Materials and Methods).
The performance of L1-to-L2 prediction peaked at an accuracy
of 0.71 (p¼ 0.0001) when using 546 voxels (Fig. 4a). The accu-
racy of L2-to-L1 prediction peaked at 0.74 (p, 0.0001) when
using 92 voxels. Additional analyses on single grammatical
features showed that tense, voice, or emphatic forms could be
reliably identified at a wide range of number of voxels, in both
L1-to-L2 and L2-to-L1 predictions (Extended Data Fig. 4-1b),
which suggested the identifiability of the entire-sentence
grammatical construction (Fig. 4) was not driven by a single
grammatical feature.

Therefore, the modeling of neural similarities is more gener-
alizable to a different language compared with the voxel-wise
modeling. Cross-language commonalities in representing gram-
matical meanings are shown in intersentence neural similarity
relations. The voxel activation pattern associated with an English
sentence in passive voice and present continuous tense may dif-
fer from its counterpart in Chinese, but the position of the sen-
tence in a space spanned by the neural signatures of other
English sentences is analogous to the relative neural distances of
its Chinese equivalent against other Chinese sentences.

Predicting grammar-modulated neural signatures within one
language in voxel space
To verify that grammatical features were represented by voxel
responses in a language, the within-language prediction was per-
formed using a cross-validation protocol, in which the data of
each sentence was left out at a time for validation and the rest of
the sentences in the same language were used to train the model.
When all the voxels that were better explained by grammatical
features than by features of no interests were included, the aver-
age rank accuracy of identifying the correct attributes of a test
sentence was reliably above chance in each language, being 0.80
(p¼ 0.0009) in L1 and 0.69 in L2 (p¼ 0.0296; Fig. 4d). Direct
comparison on the mean of the accuracies of within-language
and cross-language prediction in voxel space showed that the
within-language accuracy was significantly higher than the cross-
language accuracy, Wilcoxon rank sum test, rank sum¼ 687.5,
p¼ 0.02. Hence, although all the sentences depicted highly simi-
lar scenarios using the same sets of content words, the sen-
tence identities were still reliably classified for either language.
By using the same set of grammatical features, it was possible
to explain both the neural signatures of reading Chinese and
reading English sentences.

Spatial variability across individuals and languages
Results by far suggested that grammatical features within a lan-
guage were identifiable in voxel space, but the representations of
grammatical meanings were not voxel-wise aligned between lan-
guages. We first tested whether the mismatch of voxels occurred
at nearby locations by examining the association between the
spatial proximity of voxels and the encoding patterns between
languages, following the approach of Guntupalli et al. (2016).
The weight similarity between languages was computed for a
given pair of brain locations (voxels) using Pearson’s correlation
within each participant. Pearson’s correlation between the weight
similarity and the Euclidean distance of voxel pair was then com-
puted to examine whether greater distance was associated with
greater weight dissimilarity. For all pairs of voxels, the mean dis-
tance-weight correlation was �9� 10�4 over participants, rang-
ing from �0.046 to 0.023. When only the voxel pairs that were 0
(same brain location for two languages) to four voxels away were
considered, the weight similarity did not decrease when voxel
distance increased: the mean correlation over participants was
7� 10�6, ranging from �0.068 to 0.085 (Extended Data Fig. 5-1).
The low correlation implied that voxels with matching weights
were not at nearby locations. We then examined whether allowing
for the voxel-wise misalignment across participants or across lan-
guage when constructing neural similarity patterns would also
result in reliable cross-language identifications.

Taking individual differences into account
To take into account the individual differences in either structure
or functional topographies, the intersentence neural similarity
was computed within individual participants and then averaged
across participants. The rank accuracy was 0.77 (p, 0.0001) for
L1-to-L2 prediction and 0.75 (p, 0.0001) for L2-to-L1 pre-
diction. When different numbers of voxels were searched
though, the performance of L1-to-L2 prediction peaked at
0.82 (p, 0.0001) and the accuracy of L2-to-L1 prediction
peaked at 0.87 (p, 0.0001; Fig. 4b; Extended Data Fig. 4-3).

Taking language differences into account
Optimizing voxel selection within each language separately
resulted in similar performances in characterizing the com-
mon grammatical representations between languages. Here,
we constructed the similarity vectors for a test sentence based on
the voxels selected using other sentences in the same language as
the test sentence. The resulting accuracies ranged from 0.72 to
0.81 in L1-to-L2 prediction and ranged from 0.67 to 0.75 when
training on L2 to predict L1 (Fig. 4c). Post hoc examination
showed that the cross-language commonality of neural representa-
tions could be captured with a small amount of overlap of voxels
(Fig. 4f; Extended Data Fig. 4-2). When the mean cross-language
prediction accuracy across the two directions was maximal, being
0.86 (p, 0.0001) and 0.88 (p, 0.0001) in either direction, the
overlap rates of voxels were 0.01%, i.e., 0.01% of voxels were
selected by both languages over all the selected voxels.

Language difference and individual differences in spatial patterns
We then asked whether the between-language difference in spa-
tial pattern was systematic given the intersubject variability
within language. The intersubject similarity of the binary maps
of voxel selection within each language was tested against the
empirically generated distribution of intersubject similarity
when the language labels (L1 or L2) for randomly selected
maps were switched (see Materials and Methods). intersubject
cosine similarity within L1 was 0.49, significantly larger than
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the random-shuffling distribution (p¼ 0.0063). By contrast, the
intersubject similarity in L2 was 0.45, the p value of which against
the random-shuffling distribution was 0.9992, suggesting the
within-L2 similarity was smaller than L1. Comparison of the
intersubject similarity within L1 versus the similarity within L2
showed a significant difference between languages (paired-sam-
ple t(740) ¼ 16.24, p¼ 5.98� 10�51; Extended Data Fig. 5-3).
Therefore, the locations of voxels representing L2 grammatical
features were more varied across individuals than the locations
of voxels representing L1.

Between-language comparison of the intersubject similarity
was further performed within individual brain regions defined by
the Automated Anatomical Labeling (Tzourio-Mazoyer et al.,
2002). Only the 90 noncerebellum regions were considered. Forty-
four of the 90 regions showed significant differences between lan-
guages (FWE corrected p¼ 0.05), including bilateral frontal and
temporal cortices, supramarginal gyri, anterior cingulate cortex,
and precuneus (Extended Data Fig. 5-4). Thus, widespread brain
regions contributed to the greater intersubject variability of L2
representation identified at the whole-brain level.

Distribution of informative voxels in two languages
The nonoverlapping voxels in two languages might be located in
discrete brain regions, or located in common areas in an interwoven
way, presenting different local spatial patterns. If the latter was true,
the informative brain areas in the two languages were expected to
overlap after slight smoothing. To characterize how the neural
representations of grammatical meanings differ between lan-
guages, multikernel density analysis (Wager et al., 2009) was
performed to identify consistently selected voxels across partici-
pants (p¼ 0.05, FWE corrected). The resulting maps of brain
regions for the two languages revealed an interleaved pattern
(Fig. 5). Overlapped brain areas across languages were identi-
fied in bilateral superior temporal sulcus, posterior inferior tem-
poral gyrus, posterior supramarginal gyrus, insula, inferior frontal
gyrus, middle frontal gyrus, middle cingulate cortex, and anterior
cingulate cortex. The results suggested that the voxels selected for
representing grammatical meanings in the two languages occupied
common neural system but different local patterns.

Laterality differences in representing grammatical meanings
in two languages
Informative voxels that represented grammatical features were
bilaterally located for both Chinese and English sentences (Fig. 5).
When the number of selected informative voxels was compared

between hemispheres at the whole brain level, a small but robust
lateralization difference was found at multiple thresholds of the
numbers of selected voxels: voxels with stable response profiles
over Chinese (L1) sentences were more right-lateralized compared
with those over English (L2) sentences (Extended Data Fig. 5-2a).
Laterality was then examined within each of the following regions
that have been identified by meta-analysis (Binder et al., 2009) and
were found consistently informative in the current study: infe-
rior frontal gyrus, superior temporal sulcus/middle temporal
gyrus, and the inferior parietal cortices including angular gyrus
and supramarginal gyrus. We particularly tested the between-
languages difference when 437 voxels were selected in each par-
ticipant in each language, because this number of selected vox-
els results in the highest cross-language accuracy among the
range of numbers of voxels (Fig. 4). Only the inferior parietal
lobule showed a significant between-languages difference in lat-
erality index, but it was the L1 that showed stronger left laterali-
zation (t¼ 4.00, FWE corrected p¼ 0.0018). The pattern was
consistently seen when multiple numbers of selected voxels
were examined (Extended Data Fig. 5-2b).

Identifying grammatical constructions at individual
participant level
The prediction of grammar-modulated neural signatures
was performed within individual participants using the
same approach as when using all participants’ data. The
grammatical constructions were reliably classified in 27 out
of 39 participants for L1 sentences, and were reliably classi-
fied in 26 participants for L2 sentences (Extended Data Fig.
4-4a). Sixteen participants showed significant accuracy in
both languages. These single-subject-level performances
were comparable to those in previous fMRI decoding studies
(see Discussion for details). Among these 16 participants, the
accuracy of cross-language prediction in similarity space was
significantly above chance level in 13 participants when models
were trained on L1 to predict L2, and in 14 participants when
trained on L2 to predict L1 sentences. By contrast, among the
16 participants, the accuracy of cross-language prediction in
voxel space was significantly above chance level in only one
participant when models were trained on L1 to predict L2, and
in 3 participants when trained on L2 to predict L1 sentences
(Extended Data Fig. 4-4b). For the three participants who did
not show reliable accuracy when the prediction was performed
in similarity space in either direction of prediction, none
showed reliable accuracy in voxel space. The mean accuracy of

Figure 5. Spatially interleaved distribution of informative voxels for identifying grammatical meanings in each language. The colored voxels were consistently (simulation-based p¼ 0.05)
selected across participants for modeling grammatical features. The association of the voxels’ distance with the weight similarity was negligible (Extended Data Fig. 5-1). Voxels representing
Chinese (L1) sentences were more right-lateralized than those over English (L2) sentences (Extended Data Fig. 5-2). Voxels representing L2 grammatical features were more varied across partic-
ipants (Extended Data Figs. 5-3, 5-4).
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the prediction in similarity space was significantly higher
than that in voxel space (Wilcoxon signed-rank test, two-
sided p¼ 0.0004 for training on L1 to predict L2; two-sided
p¼ 0.0004 for training on L2 to predict L1). These results
were consistent with the group-level findings that cross-lan-
guage common representation of grammatical meanings was
shown in neural similarity relations but not in voxel-to-voxel
relations.

Testing the role of features of no interests in explaining
signals in selected voxels
To ensure that the voxels identified for representing grammatical
features were not explained the features of no interest, the sen-
tence identification in the neural similarity space was performed
by training models using the 30-dimensional features of no inter-
ests. The resulting rank accuracy was 0.45 for L1-to-L2 predic-
tion and 0.36 for L2-to-L1 prediction, none being significantly
greater than chance level (ps. 0.05), suggesting that these voxels
did not use the potential confounding variables to achieve cross-
language sentence prediction.

Discussion
This study investigated how meanings conveyed by morpho-
logic and syntactic features of different languages were repre-
sented in the bilingual brain. On a coarse scale, brain regions
that were consistently responsive to different morphosyntactic
features in one language were spatially interleaved with those in
another language. On a finer scale, the spatial patterns that rep-
resented specific grammatical meanings differed between lan-
guages, as suggested by the marginal accuracy in cross-language
meaning identification. Cross-language decoding based on neural
similarities resulted in robust above-chance accuracy, suggesting
common pattern of intersentence relations across languages.
Substantial locational overlap was not necessary for capturing the
cross-language representational commonalities. Thus, common
grammatical meaning in different languages is represented by dis-
tinct neural spatial patterns, and is aligned through higher-order
neural similarity space (Fig. 1).

Regarding how the two languages differed in the representa-
tional patterns, first, locations of voxels that represented sentence
constructions in L2 showed greater variability across individuals
than L1. Considerable individual differences has been found in
the distributed native language network (Fedorenko et al., 2010;
Braga et al., 2020). The present result suggests greater cross-indi-
vidual variability for representing grammatical constructions in
second language in a large number of brain regions. Second, de-
spite the intersubject differences, cross-participant commonal-
ities were still identified in regions that composed the universal
language network (Malik-Moraleda et al., 2022). The overall dis-
tribution of the voxels in two languages lay in similar brain
regions, so the spatial pattern differences were local rather than
regional. Third, although at the whole-brain level, informative
voxels were right-lateralized for representing Chinese and left-
lateralized for representing English, greater left lateralization for
Chinese was found within the semantic systems, specifically in
the inferior parietal lobule. Previous studies have reached little
consensus on whether and how the second language representa-
tion is different from L1 representation (Liu and Cao, 2016;
Cargnelutti et al., 2019; Sulpizio et al., 2020; H. Li et al., 2021).
This study suggests that for representing grammatical meanings, it
might be the discrepancy in L2 representation across individuals
that resulted in the between-language discrepancy at group level.

The present evidence implies that the spatial patterns of neu-
ral activations for representing grammatical meaning is lan-
guage-specific, which is different from content-word semantics.
Regardless of the debate on whether grammar is an autonomous
linguistic structure, the morphologic inflections and sentence
structures do bear semantic information. Formal linguistics and
cognitive grammar theory hold different views on whether gram-
mar forms an independent level of representation distinct from
semantics. Previous studies have identified common neural sig-
natures of concepts expressed by content words and their simple
compositions (Buchweitz et al., 2012; Correia et al., 2014; Zinszer
et al., 2016; Yang et al., 2017). This study shows a different pat-
tern for representing grammatical meanings, specifically, differ-
ent languages realize grammatical meanings by different voxel
activation patterns. Such differences might be derived from the
differences in sentence structures or in the linguistic units in the
two languages, namely, the use of morphologic inflections or
function words. Moreover, the fact that the grammatical mean-
ings in two languages were aligned in the secondary space of neu-
ral similarity indicated structures did contain meanings. Such
differential neural signatures captured by the models are likely to
represent the grammatical meanings, rather than the structural
complexity of sentences, for several reasons. First, the grammati-
cal features were defined and aligned between languages by
meanings rather than surface structures, in that the forms or
structures in the two languages were different when representing
common grammatical meanings. For instance, the word orders of
the same grammatical meaning in the two languages are different
in several cases: patient-focusing sentences in English in this
study use the inverted structure that moves the object forward,
whereas patient-focusing sentences in Chinese keep the object at
the end of the sentences. Hence, the cross-language sentence pre-
diction is a reliable test of the existence of neural representation
of grammar-determined sentence meanings rather than struc-
tures. Second, the effects of various features of no interests were
controlled throughout the analyses and explicitly tested. Third,
the stimulus sentences were simple by design and expected to
elicit no comprehension difficulty. Fourth, participants were pro-
ficient late bilinguals; they were familiarized with the sentences
before they went into the scanner and reported no questions or
doubts when asked. In addition, the distinct locations that were
responsive to the differences in tense, voice, or emphatic form
may reflect the distributed representations of semantics deter-
mined by different grammar features, rather than a single variable
such as sentence complexity.

Performances of the within-language prediction were above
chance-level on about two-thirds (67%) of the participants. Because
above-chance performance for single participant’s model is not a
necessity for making inferences based on a reasonable sample
size, the majority of the studies did not report the subject-level
results (Baron and Osherson, 2011; Coutanche and Thompson-
Schill, 2015; Parkinson et al., 2014; Yang et al., 2017; Vodrahalli
et al., 2018; Weisberg et al., 2018; Frankland and Greene, 2020).
For studies that reported subject-level semantic decoding per-
formances, including word-level decoding, none to our knowl-
edge used .20 participants a single decoding task, whereas the
present study included 39 participants. Many of the studies
aimed to classify word-level concepts or semantic categories
(Mitchell et al., 2008; Mason and Just, 2016; Bauer and Just,
2017; Vargas and Just, 2022). Among the studies that decoded
sentence-level semantics at individual level, one had a sample
size of 20 participants, thirteen of whom (65%) yielded above-
chance accuracy in either a sentence classification or a word
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classification task (Allen et al., 2012). Other two studies included
small samples (six to eight subjects in a task), acquired large
within-subject dataset (over 4 h of scan per subject), and yielded
above-chance accuracy on all subjects (Wang et al., 2017; Pereira
et al., 2018). Note in both studies, the participants were specifically
recruited based on the decoding results of their data in other tasks.
One of the studies (Pereira et al., 2018) also reported word-level
decoding results on 16 participants, where 7 out of 16 (44%) or 10
out of 16 (63%) participants showed significant accuracy depend-
ing on the task difficulty. We contend that it is typical that the
group-level result is not replicated on every single subject, and it is
unnecessary to replicate the group-level results on each subject to
make inferences when the sample size is sufficient.

Some limitations of this study were related to the use of unnat-
uralistic language stimuli with very limited samples: we only inves-
tigated a small number of grammatical meanings within a fixed
word-semantic space (chef cutting carrot/grower washing toma-
toes). Because a specific grammatical meaning is realized by a spe-
cific sentence construction in this study, the frequency of sentence
construction might be a potential confounder to the representa-
tion of grammatical meanings. Future studies are required to test
whether the current findings apply in rich semantic contexts and
in naturalistic language processing.

The power of human language in expressing unlimited num-
ber of thoughts comes from the flexible manipulations of a lim-
ited set of linguistic constituents, the complexity of which goes
beyond superimpositions of multiword semantics. This study
showed the possibility of systematically examining brain repre-
sentations of the conceptualization of grammars. What we have
discovered in this study suggests separable neural response pat-
terns for the representation of sentence structures for two lan-
guages, yet the between-language differences are systematically
driven by meaning, which brings the neural representations to
convergence in the higher-order space.
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