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Abstract 

The fine temporal resolution of electroencephalography (EEG) makes it one of the most widely 

used non-invasive electrophysiological recording methods in cognitive neuroscience research. 

One of the common ways to explore the neural dynamics is to create event-related potentials 

(ERPs) by averaging trials, followed by the examination of the response magnitude at peak 

latencies. However, a complete profile of neural dynamics, including temporal indices of onset 

time, offset time, duration, and processing speed, is needed to investigate cognitive neural 

mechanisms. Based on the multivariate topographic analysis, we developed an analytical 

framework that included two methods to explore neural dynamics in ERPs. The first method 

separates continuous ERP waveforms into distinct components based on their topographic 

patterns. Crucial temporal indices such as the peak latency, onset and offset times can be 

automatically identified and indices about processing speed such as duration, rise, and fall speed 

can be derived. The second method scrutinizes the temporal dynamics of identified components 

by reducing the temporal variance among trials. The response peaks of signal trials are identified 

based on a target topographic template, and temporal-variance-free ERPs are obtained after 

aligning individual trials. This method quantifies the temporal variance as a new measure of 

cognitive noise, as well as increases both the accuracy of temporal dynamics estimation and the 

signal-to-noise ratio (SNR) of the ERP responses. The validity and reliability of these methods 

were tested with simulation as well as empirical datasets from an attention study and a semantic 

priming (N400) study. Together, we offer an analytical framework in a data-driven, bias-free 

manner to investigate neural dynamics in non-invasive scalp recordings. These methods are 

implemented in the Python-based open-source package TTT (Topography-based Temporal-

analysis Toolbox). 
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Introduction 

The accessibility of non-invasive human scalp recordings, such as electroencephalography (EEG) 

makes it one of the most widely used tools in the cognitive neuroscience research as well as in 

the clinical and commercial settings (Biasiucci, Franceschiello, & Murray, 2019). Its fine 

temporal resolution at millisecond-level grants this technique enormous advantages to probe the 

underlying neural dynamics of various cognitive functions (Luck, 2014). However, non-invasive 

scalp recordings are usually noisy. To improve SNR, neural signals are averaged across trials to 

reveal relatively stable dynamics. With random noise being averaged out, the remaining 

waveform is called the Event-Related Potential (ERP). One of the common ways to explore the 

neural dynamics in ERPs is to examine the neural response magnitude around certain peak 

latencies. Using this method, many important ERP components that reflect the processing 

dynamics of cognitive functions have been identified, such as N1, P2, P300, N400, P600 etc 

(Näätänen & Picton, 1987; Luck & Hillyard, 1994; Donchin & Coles, 1988; Kutas & Hillyard, 

1980; Friederici, 2002). 

 

The well-established ERP analysis utilizes only a small portion of the high-resolution temporal 

information from EEG recordings, namely the peak latencies. More temporal indices can provide 

a more complete picture of neural dynamics. For example, the onset time of a component can 

represent the initiation of a cognitive process. The difference between the onset time and the 

peak latency, the rising duration, reflects the accumulation speed of a cognitive process. 

Temporal information about ERP components can be used to answer many cognitive research 

questions. For example, faster neural activation or shorter duration was observed with the 
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repetitive exposures of the same stimuli, which suggested neural facilitation as a potential 

mechanism to the behavioral priming (Grill-Spector, Henson, & Martin, 2006). The rich neural 

dynamics and its importance have been implicated in many other cognitive domains, such as 

aging (Dustman et al., 1990), learning (Rossion, Gauthier, Goffaux, Tarr, & Crommelinck, 2002), 

decision making (Nieuwenhuis, Aston-Jones, & Cohen, 2005), attention (Zopf, Giabbiconi, 

Gruber, & Müller, 2004), emotion (Streit, Wölwer, Brinkmeyer, Ihl, & Gaebel, 2000; Huang & 

Luo, 2006), memory (Haenschel, Vernon, Dwivedi, Gruzelier, & Baldeweg, 2005). 

 

Despite the importance of the temporal information, the investigation of EEG dynamics is scarce. 

Estimating the temporal indices is constrained by the limitations of EEG recordings. First, 

signals from the same neural source may be picked up at different times by different sensors, 

because the distributed sensors have different distances from the source. It is difficult, if not 

impossible, for an observer outside the black box to accurately infer the temporal information of 

underlying neural processing from data of individual scalp sensors. Second, an ERP component 

may consist of multiple neural sources that overlap completely or partially in space and time. 

The complex spatial-temporal dynamics are hard to disentangle. Last, the common practice to 

boost the signal-to-noise (SNR) of EEG signals is to average multiple trials. However, the 

temporal features of signals vary across trials (e.g. may start earlier, process faster in some trials). 

This temporal variance is even greater in the components that are temporally further away from 

the onset of stimuli. When averaging trials, the actual temporal dynamics, and its parameters are 

smeared due to the temporal variance across trials.  
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Current common practices of temporal analyses are mostly based on the response magnitude of 

waveforms in individual sensors (Luck, 2014). For example, peak latency is defined as the time 

point when the voltage reaches the local maximum within a specific range. Onset and offset 

latencies are determined based on the relative response magnitude changes from a baseline 

measure. However, methods that rely on the magnitude in individual sensors are subject to the 

abovementioned problems -- the variation of dynamics across sensors, complex dynamics among 

sensors due to temporal and spatial overlapping of neural sources. Moreover, the practice of 

“picking sensor” is laborious, and may introduce subjective bias, and cannot represent the entire 

dynamics. Single sensor analysis is also subject to possible temporal variance induced by 

averaged single trials. Therefore, averaging and examining single sensor waveforms makes the 

investigation of temporal dynamics less optimal, if not misleading. 

 

Recently, we developed an alternative ERP analysis method based on the topography (Tian & 

Huber, 2008; Tian, Poeppel, & Huber, 2011; Yang, Zhu, & Tian, 2018). A topography of ERP 

responses is the electric field distribution in all sensors over the scalp. It represents the 

configuration of underlying neural processes. We have developed multivariate analysis methods 

for testing psychological and neuroscience hypotheses by assessing the patterns of topographies 

between experimental conditions (Tian & Huber, 2008; Tian, Poeppel, & Huber, 2011) and 

implemented these methods in an open-source toolbox, EasyEEG (Yang, Zhu, & Tian, 2018). 

These topography-based multivariate analysis methods can distinguish changes in response 

magnitude vs. changes in neural source configuration, overcome the individual differences, avoid 

the pitfalls of using individual sensor data and provide an unbiased and complete assessment of 

underlying neural processes (Tian & Huber, 2008). 
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More importantly, the changes of topography over time can directly and unbiasedly reflect the 

neural dynamics. Therefore, in this study, we develop an analytical framework that includes two 

temporal analysis methods based on topography to probe the temporal dynamics of ERP 

components. Specifically, the first method (Temporal evolution of components) segments 

continuous waveforms into discrete ERP components and extracts a set of temporal information 

for each component. The second method (Precise temporal estimation after reducing temporal 

variance across trials) assesses the temporal variance across trials and provides an alignment 

approach to reduce variance for better evaluation of temporal parameters. These steps overcome 

the problems of variation across sensors and trials and offer an analytical framework in a data-

driven, bias-free, automatic manner to investigate neural dynamics in non-invasive human scalp 

recordings. These methods have been implemented in an open-source toolbox, the Topography-

based Temporal-analysis Toolbox (TTT, https://github.com/TTT-EEG/TTT-EEG). It also offers 

an interface to effectively link with our ERP data analysis software EasyEEG (Yang, Zhu, & 

Tian, 2018, https://github.com/ray306/EasyEEG) and python-based MNE software (Gramfort et 

al. 2013, https://github.com/mne-tools/mne-python).  

 

In the following sections, we first provide an introduction of each method, followed by a test 

case using simulated data with predetermined characteristics to illustrate its functionality. Lastly, 

we apply each method on empirical data to further validate the method in a real experimental 

context. 
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Temporal evolution of components  

A cascade of cognitive processes unfolds over time to effectuate a behavior. ERP waveforms 

manifest these cognitive processes as consecutive components. It’s important to separate each 

component in the temporal space and evaluate its starting and ending points. This separation 

helps to better identify and quantify the dynamics of cognitive processes, and to facilitate later 

analysis. Therefore, we first propose a method to separate continuous waveforms into distinct 

components and to extract a set of temporal indices (onset time, peak latency and offset time) for 

each component. This method assumes that a topographic pattern remains consistent throughout 

the period of an ERP component, and changes of topographic patterns indicate the transition 

between components. We used both datasets from artificial simulation and real experiments to 

test the validity of this assumption and method. Both results strongly supported our assumption 

and method. 

 

Method 

An ERP component that reflects specific cognitive processes usually takes time to unfold. 

Throughout the time course, the response magnitude waxes and wanes. Whereas, the response 

pattern in the sensor space (topography) remains relatively consistent because the configuration 

of the underlying neural sources remains the same. Therefore, identifying the transition between 

topographies can separate components in time, and provides temporal boundaries (the onset and 

offset time points). Whereas, the time point when response magnitude reaches maximum yields 

the peak latency of that ERP component. The complete set of temporal indices for an ERP 

component (onset, peak, and offset time) provides the necessary information to define the 

evolution of that component. 
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The intra-component topographies exhibit a high degree of pattern similarity while inter-

component topographies are dissimilar. Therefore, we use the degree of similarity between 

topographies to identify the temporal boundaries (onset and offset times) between components. 

Cosine distance measure (Manning, Raghavan, & Schütze, 2010; Tian & Huber, 2008) quantifies 

the degree of similarity between topographies. Specifically, a topography is mathematically a 

high dimensional vector, where the number of dimensions equals the number of sensors. Cosine 

value of the angle between two vectors represents the degree of similarity between two 

topographies �, � -- the larger the cosine value is, the more similar the topographies are (Tian, 

Poeppel, & Huber, 2011): 

 

������	�
���, �
  �  �����
  � � � ���� ���  � ∑ ����
�
� � �

�∑ ��
��

� � � �∑ ��
��

� � �

 

 

The cosine value is independent of response magnitude and only represents the response pattern 

similarity. It is the key feature that enables the detection of the transition of topographies 

between components.  

 

An epoch with � time points is used as an example for demonstration (� �  � �  �, where � is 

the sampling rate and � is the duration). A topography is presented at each time point (Fig. 1A). 

We constructed an N-by-N similarity matrix (Fig. 1B) by comparing each pair of topographies. 

The (ith, jth) element of the matrix denotes the degree of similarity between the ith and jth 
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topographies. The similarity matrix is symmetrical along the principal diagonal line. All cosine 

values are in the range of [-1, 1].  

 

With the similarity matrix, we identify square-shaped high-similarity clusters in the matrix to 

identify each component. The boundaries of a cluster are the onset and offset time points of an 

ERP component. To capture the clusters automatically, we use an edge detection operation with 

Scharr kernel (Scharr, 2000;  Jähne, Haussecker, & Geissler, 1999) on the similarity matrix. We 

define the Scharr kernel as �, the similarity matrix as �. The Scharr operator � is defined as: 

 

� �  � �3 � 3! 0 � 10! 3 � 3!�10 $ 0! 0 $ 0! 10 $ 0!�3 $ 3! 0 $ 10! 3 $ 3! % 

 

The edge detection operation is implemented as a 2-D convolution. By applying the convolution 

to the � and �, we produce a gradient matrix denoted as & (Fig. 1C): 

 

& �  �� �  �
�', �
  �  ( ��), *
 ��' � ), � � *
 +) +*�

��

  
 

The ridges in the gradient matrix are the boundaries of the clusters. Therefore, we can obtain the 

precise onset and offset time points of an ERP component.  

 

Based on the detected onset and offset times, we can derive more indices for the measurement of 

ERP components’ temporal dynamics. The first index is the duration of an ERP component. The 

duration represents the total activation time of an ERP component and reflects the efficiency of 
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performing underlying cognitive processes. The second index is the rise speed (RS) and fall 

speed (FS). These two indices are the changing speed of response magnitude from onset to peak, 

and peak to offset, respectively. They capture how fast neural activity accumulates and decays, 

which is asymmetric in some cases. We suggest that these indices reflect the intrinsic temporal 

properties of ERP components. Hence, they are important measures to investigate the dynamics 

of cognitive processes (Ng, Tobin, & Penney, 2011).  

 

Simulation 

We generated a simulation dataset to test the method. Each topography had 32 sensors with a 

standard 10-20 montage. The sampling rate of the dataset was 1000 Hz. The total duration of the 

dataset was 1000 milliseconds. One ERP component was simulated by concatenating a rising 

half and a falling half based on sinusoidal waveforms (rising duration: 140ms, falling duration: 

200ms). Each sensor shared the same phase, but differed in amplitudes (normal distribution, 

mean = 3.00μV, std = 0.60μV, max = 4.59μV, min = 1.83μV). The onset, peak, offset time 

points were set to 200ms, 340ms, 540ms, respectively. We also added a Gaussian noise 

(frequency range: 0.1-30 Hz, SNR = 2.5) to the signal. The simulated dataset is presented as a 

waveform plot with the global field power (GFP) superimposed (Fig. 1A). Topographies at 

selected time points are shown above the GFP waveform to demonstrate the temporal evolution 

of the component. The cosine similarity between a pair of topographies at each time point was 

calculated and presented as a 1000-by-1000 similarity matrix (Fig. 1B). 

 

To automatically and precisely capture the onset and offset time points, we used the Scharr 

kernel to generate a gradient matrix (Fig. 1C). The ridges (dark lines in Fig. 1C) in the gradient 
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matrix plot denotes the temporal boundaries of the component. The red portion of the GFP 

waveform denotes the preselected window that contains the component. The green dots denote 

the automatically detected onset and offset time points and yellow star denotes the peak latency. 

Our method successfully detected the onset and offset latencies of the pre-constructed 

components (onset: 203ms, peak latency: 341ms, offset: 536ms, duration: 333ms, rise speed: 

20.81μV/s, fall speed: 15.06μV/s). 

 

Figure 1. Simulation results of the first method (Temporal evolution of components). (A) The simulated 
data. The simulated waveform responses were generated using sinusoidal waves with additional Gaussian 
noise. Black lines in the lower panel represent the raw data of 32 sensors. The red line represents the 
global field power (GFP), the geometric mean of responses across all sensors. Topographies at selected 
latencies are depicted in the upper panel, showing the temporal evolution of the component. (B) The 
similarity matrix. Cosine values are obtained by comparing each pair of topographies (1000 x 1000). The 
(ith, jth) element of the matrix denotes the degree of pattern similarity between the ith and jth topographies. 
Principal diagonal line is the auto-correlations of each topography, therefore the values are all ones. High-
correlation (green-yellow) clusters along the principal diagonal line reveal the component. (C) Gradient 
matrix with superimposed GFP waveform. Dark ridges in the gradient matrix represent the cluster 
boundaries. The GFP waveform is superimposed on the gradient matrix with the red portion represents 
the pre-selected period of interest (POI) for the detection of a component. The green dots on the GFP 
label the detected onset and offset time points, corresponding to the ridges in the gradient matrix. The 
yellow star represents the detected peak latency at the maximum amplitude of the GFP waveform. 

 

 

an 
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Application 

We used an empirical dataset from a recent ERP study (Zhang, Tao, & Zhao, 2019) to further 

test our method. This study investigated how perceptual separation and auditory spatial attention 

interact with each other to facilitate speech perception in a noisy environment. Latency 

differences in N1 and P2 components under different conditions were reported. We applied our 

method on this dataset to further test the validity and efficiency of our method.  

 

First, our method identified N1 peak latency based on the individual GFP waveform for each 

condition. Then we performed a repeated-measures two-way ANOVA with factors of perceptual 

location (2 levels) and direction of attention (2 levels) on the N1 peak latency. The main effect 

of perceptual location was significant (F(1,18) = 5.122, p = 0.036). Neither direction of attention 

(F(1,18) = 2.862, p = 0.108) nor the interaction (F(1,18) = 0.180, p = 0.677) reached significance. 

Our results on N1 latency were consistent with the original findings (Zhang, Tao, & Zhao, 2019). 

Our method could not reliably detect the peak of the P2 component because there was no clear 

peak in the GFP waveform (see Fig. 2A top-right as an example). It was also consistent with the 

speculation in the original paper that P2 and later P300 component might temporally overlap. 

Our automatic method successfully replicated the findings in an empirical ERP study, suggesting 

the validity and efficiency of our method when applied in a practical setting. 

 

Moreover, we supplemented the original findings with extra temporal indices (N1 onset, offset; 

P2 onset, P300 onset -- the temporal boundary between P300 and P2) that were automatically 

identified by our method. Similar repeated-measures two-way ANOVA was performed on each 

index. First, for the N1 onset, the main effect of perceptual location was significant (F(1,18) = 
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4.889, p = 0.040). But direction of attention was not significant (F(1,18) = 0.353, p = 0.560), 

neither was the interaction (F(1,18) = 3.468, p = 0.079). These results of the N1 onset time point 

differences suggest that the perceptual location modulates the initiation timing of the very first 

auditory ERP response. The originally observed difference in the N1 peak latency was likely 

caused by the early initiation of neural responses in the perceptual co-location condition. Second, 

for the P300 onset, the main effects were not significant (for perceptual location, F(1,18) = 

0.309, p = 0.585, for direction of attention, F(1,18) = 3.145, p = 0.093). However, a significant 

interaction was observed (F(1,18) = 11.708, p = 0.003). Further t-test showed that the onset time 

of P300 component in the on-target attention condition was later than that in the off-target 

condition when the perceptual locations were separated (t(1,18) = 2.404, p = 0.027).  Neither N1 

offset or P2 onset showed significant differences among conditions. These results suggest that 

the faster transit from P2 to P300 possibly reflects the processing speed of cognitive mechanism 

between perceptual location and direction of attention in a “cocktail party” environment. Using 

our new method, we obtained additional temporal dynamics results that were crucial evidence to 

test potential neural mechanisms. These results suggest that our automatic topography-based 

temporal segmentation method can provide a complete set of temporal measures to investigate 

various aspects of cognitive neuroscience theories.  
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Figure 2:  Results of the first method (Temporal evolution of components) on an auditory spatial attention 
experiment (Zhang, Tao, & Zhao, 2019). (A) Extracted temporal indices from the empirical dataset. 
Lower panel, topographies across time for each experimental condition. Upper panel, gradient matrices 
with GFP and detected temporal indices (onset, offset, and peak latency, similar to Fig. 1C).  
Abbreviation: co: perceptual co-location, sep: perceptual separation, on: on-target, off: off-target. (B) 
Statistical test for the N1 peak latency, N1 onset, and P300 onset. The main effect of perceptual location 
was significant for the N1 peak latency, as well as the N1 onset. The interaction was significant for P300 
onset latency. 

 

Precise temporal estimation after reducing temporal 

variance across trials 

Temporal indices can be captured by the first topography-based method. It overcomes the 

problems of variance across sensors as well as temporal and spatial overlapping of neural sources

in the sensor space. However, they are still based on averaging of trials, and therefore are subject 

to temporal variance across trials. For example, if response peaks in individual trials have large 

temporal variability and are not temporally aligned, the duration of an averaged ERP component 
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would be longer than it truly is. Moreover, because of the temporal unalignment among 

individual trials, the response magnitude could be averaged out and hence smaller than the actual 

peak response. In most cases, the temporal variance among trials is what researchers should be 

cautious to avoid. Whereas in other cases, the temporal variance among trials is the measure of 

interest and implies possible underlying cognitive mechanisms. For example, one study showed 

that children with ASD had more variance in their P1 latency to Gabor patches than the control 

group, lending support to the theory of increased neural noise in ASD (Milne, 2011). Therefore, 

it’s necessary to quantify the temporal variance among intra-subject single trials, followed by 

either removal the temporal variance to obtain a more precise estimation of temporal indices, or 

analysis the temporal variance to investigate neural and cognitive theories. 

 

Here, we propose a method to find peaks in single trials based on a topographic template. This 

method assesses the temporal variance across trials and obtains temporal-variance-free ERPs by 

aligning trials. This method can increase the accuracy of temporal dynamics estimation. The re-

alignment can also increase the SNR of the averaged ERP responses. Furthermore, this method 

takes the temporal variance across trials into account and offers a novel angle to explore the ERP 

components -- whether the experimental manipulations change the temporal dynamics of a 

component or change the variance across trials.  

 

Method 

Peak latency of a component in an ERP can be identified using the first method. The topography 

at the peak latency is selected as a template, denoted by � (Fig. 3A). This selected template 

topography is the stable and accurate neural representation of the component. Topography can be 
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viewed as a vector in a high dimensional space, and the vector of template topography provides 

the exact direction of the ERP component.  

 

For every trial, the topography 
� , at each time point � is projected onto the vector of template 

topography � (Fig. 3B). In this way, each topography vector is decomposed into two orthogonal 

parts, one parallel to the template, 
//

� , and the other perpendicular to it, 
�


� : 

 


�  �  
//

�  $ 
�


�  

 

The perpendicular part that is orthogonal to the direction of template topography, is irrelevant to 

the representation of interest. Whereas, the strength of the parallel part reflects the activity along 

the direction of the template vector. By only keeping the parallel part, we can measure the noise-

free response magnitude as the projection length ��: 

 

��  �  ,
//

� ,  �  ,
�,�����  � 
�  � �|�| , ./0	0 ���� 
/0 �12�0 �0
.001 � �1+ 
�  

 

The projection calculation is carried out for each time point during the duration of the component. 

The projected values as a function of time form a new waveform for each trial. The time point 

when the single-trial projection length ��  reaches the maximum is identified as the new peak 

latency for each trial and denoted as 3: 

 

 3 �  �	2��'����
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A distribution of single-trial peak latencies relative to the template latency can be obtained (Fig. 

3C). To estimate the temporal variance of individual trials, this distribution is fitted with a 

probability density function. The temporal variance can be estimated in the fitted distribution. 

After identifying individual trial peak latencies, we can align trials according to the individual 

peak latencies and obtain the ERP by averaging the aligned trials (Fig. 3D). This temporal 

alignment across trials makes the peak of a given component time-locked and hence increases 

the SNR and reveals the undistorted true waveform.  

 

Simulation 

To test this method, we generated two sets of trials based on a sinusoidal waveform (Fig. 3A). 

Each set of trials has different single trial patterns but results in identical averaged waveforms 

(bold red waveform in Fig. 3A). The trials in the first set (trials in blue in Fig. 3A) have a shorter 

duration and higher varied peak latencies than the trials in the second set (trials in orange in Fig. 

3A). Specifically, for the trials in the first set, the duration for each trial is sampled from a 

uniform distribution of ' 4 5�20, 30
, and its onset is from ' 4 5�0, 30
. The peak occurs 

around the middle of the duration with a jitter from a uniform distribution of ' 4 5�0.4, 0.6
. 

The amplitude is set to be randomly sampled from ' 4 5�0.4, 0.6
. For the second set, the onset 

(0 ms) and duration (55ms) of all trials are set to be the same, while peak occurs at different time 

points in around the middle point jittering from a uniform distribution of ' 4 5�0.45, 0.65
. The 

amplitude is also sampled from ' 4 5�0.4, 0.6
.  
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The single-trial latencies in each set are identified using this method after projecting 

topographies of individual trials onto the template (Fig. 3B). The identified peak latencies in the 

first set of trials yield a flat and wide distribution (Fig. 3C, blue).  A normal probability density 

function is fitted against the distribution ( , ). Whereas the identified peak 

latencies in the second set of trials reveal a tall and sharp distribution (Fig. 3C, orange). The 

fitted parameters are , . These results suggest more temporal variance among

trials in the first set than the second set, which is consistent with the pre-determined settings. 

Moreover, after aligning to the identified new peaks, the new average ERP of the first set (Fig. 

3D, blue) is narrower and taller than the original averaged ERP waveform (Fig. 3A, red) and 

resembles more closely to the processing dynamics of individual trials (Fig. 3A, blue). This 

suggests improved SNR and better estimation of temporal indices for the first set of trials that 

have more temporal variance. 

 

Figure 3: Simulation results of the second method (Precise temporal estimation after reducing temporal 
variance across trials). A) Two types of simulated trials yield the same averaged waveform. The 

ng 
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waveforms represent the GFP of simulated data. The first set of trials are depicted in blue. These trials 
have a short duration and high temporal variance of peak latencies among trials. The second set of trials is 
illustrated in orange. These trials have a long duration and low temporal variance of peak latencies among 
trials. The average of both sets of trials yields the same ERP responses (bold red waveform). A template 
topography � is selected at the peak latency of the averaged responses. B) Schematic plot of projection 
for identifying peak latency in single trials. The gray arrow represents the vector of template topography, 
whereas the blue and orange arrows represent the topographies of a single trial across time from the first 
and second sets. Each topography at a time point is projected onto the template topography �. The length 
of the parallel part represents the noise-free response magnitude. The projected values form new 
waveforms and the new peak latency is identified. C) Distributions of individual trial latencies. 
Histograms of new peak latencies identified in B) are depicted in corresponding colors (blue for the first 
set trials and orange for the second set). The normal distribution function is fitted to both histograms. The 
first set of trials results in a flat and wide distribution (blue, � � 26.09, 	 �  8.80). Whereas the second 
set of trials yields a tall and sharp distribution (orange, � � 28.45, 	 �  2.81). D) Averaged ERP 
responses after aligning trials at new peak latencies. The second set of trials yield an average response 
that is similar to the original one in A). Whereas the average response of the first set of trials is shorter in 
duration and higher in amplitude compared with the original. color shaded areas represent +/- standard 
error of the mean (SEM).  

 

Application 

We used an unpublished empirical dataset from a semantic priming study to further demonstrate 

the effectiveness of this method. Participants were asked to read letter strings that could be words 

or nonwords. They performed a lexical decision task. The early visual response of N1 and the 

semantic-related response of N400 components (Kutas & Federmeier, 2011) are identified using 

the first method (Fig. 4A, N1 latency: 86ms, N400 latency: 412ms). The N1 component has a 

sharp peak, with a short duration, presumably because the transit lower-level visual processing is 

temporally close to and well time-locked to the onset of stimuli. Whereas the N400 component 

exhibits a wide, multiple-peak profile. The wide waveform can be explained by several 

hypotheses. The first is that there is one cognitive process (component) that have a long duration 

and such a long process is relatively consistent among individual trials, similar to the simulated 

Set 2 orange trials in Fig. 3A. The second possible scenario is that there is only one cognitive 

process (component), but the process is short and the peak latencies in individual trials vary as 

the semantic-related process is further away from the onset of stimuli, similar to the simulated 
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Set 1 blue trials in Fig. 3A. The last one is that it may contain multiple cognitive neural processes 

that unfold over time with temporal overlaps. However, the topographies have similar patterns 

during the duration of N400. Therefore, the last hypothesis is unlikely. The remaining two 

hypotheses compete in terms of the true cause of the observed long duration in an ERP 

component -- whether the observed long-duration N400 component is because of the underlying 

temporal dynamics, or the temporal variance across trials. 

 

We used the second method to probe the temporal characteristics of single trials that were 

averaged and resulted in the N400 and N1 components. Peak latencies of the N1 and N400 

components were identified for every trial and were compared to the averaged peak latency. The 

relative latencies (single trial peak latency minus averaged peak latency) are plotted as 

histograms (Fig. 4B). A tall, narrow distribution pattern is shown for the N1 single trial peak 

latencies. Whereas a flat, wide distribution for N400. These results indicate that the temporal 

variance of peak latencies across individual trials are much larger in N400 than in N1. The long 

duration and multiple peaks in N400 are presumably caused by the temporal variance in single 

trials. Consider the temporal variance in the N1 as a null hypothesis (the baseline level of 

temporal variance across trial caused by the systematic neural noise), the larger temporal 

variance in the N400 suggest additional contribution from the cognitive-level noise. 

 

We further aligned the trials to boost the SNR. The average responses of both N1 and N400 

become sharper after alignment (Figure. 4C), and the effect is more prominent for N400 than N1. 

The topography intensity is also enhanced. To quantify the SNR improvement, we calculated the 
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GFP peak amplitude ratio between the aligned-average and original waveforms. The SNRs for 

N1 and N400 were 1.76 and 2.29, respectively.  

 

After aligning the peak latencies of individual trials, only one peak was observed in the N400 

component (Fig. 4C). Moreover, the duration of the aligned-average N400 (Fig. 4C) was much 

shorter than the original one (Fig. 4A). Together with the observation of large temporal variance 

across trials for the N400 (Fig. 4B), these results support the hypothesis that one short cognitive 

process mediates the N400 and the apparent long duration is caused by large temporal variance 

across trials. The temporal profile of semantic processing is better estimated in the peak-aligned 

average response. 

 

Figure 4: Results of the second method (Precise temporal estimation after reducing temporal variance 
across trials) on a semantic priming experiment. A) Original averaged GFP from a semantic priming 
study (unpublished data). The topographies of N1 and N400 components are shown. B) Distribution of 
single-trial peak latencies for N1 and N400 (Similar to Fig.3C). C) Topography and GFP before and after 
alignment for N1 and N400. The peaks of both components become sharper. The SNR of N400 was better
improved compared with N1. The estimated duration of N400 was shorter than the original data in A). 
The shaded areas represent +- standard error of the mean (SEM). 

 

er 
ter 
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Discussion 

We developed an analytical framework that includes two methods to investigate the temporal 

characteristics of ERPs. Both methods are based on topography, a multivariate representation of 

neural responses in non-invasive scalp recordings. The first method reveals the temporal 

evolution of ERP components by identifying crucial temporal indices (onset, offset, peak latency, 

duration, rise speed, fall speed). It provides a complete temporal profile of each ERP component. 

The second method estimates and reduces the temporal variance across trials within each ERP 

component. The second method yields a more precise estimation of temporal indices and higher 

SNR. Estimation of temporal variance with this method also establishes a new way of single-trial 

analysis to investigate theories regarding temporal variation and cognition. These two methods 

collaboratively provide a quantitative framework to investigate neural dynamics in non-invasive 

scalp recordings. 

 

Our new methods target the temporal aspects of ERP. Previous methods use the temporal index, 

mostly peak latency, as a factor to constrain the main measure of response magnitude. The two 

new methods proposed in this study provide quantitative approaches to measure a complete set 

of temporal indices, including onset, offset, peak latency, duration, rise speed, fall speed. This 

complete temporal profile can reflect all aspects of neural dynamics, including initiation time, 

processing duration, accumulation and decay speed, which opens a new dimension in the 

analysis of non-invasive scalp recordings and pave a new way to test temporal aspects of 

cognitive neuroscience theories. 
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The proposed two methods are based on the analysis of topography. The topography-based 

analysis offers advantages over individual-sensor based analysis in several aspects. First, while 

the waveform of individual sensors is highly dependent on the choice of reference, the 

topography is reference-free (Murray, Brunet, & Michel, 2008) or can be used to achieve 

reference-free (Yao, 2001). Second, topography-based analysis utilizes all sensors, gives an 

aggregate result. Hence it is free from sensor picking bias, avoids the multi-comparison problem, 

and is robust to cross-sensor differences. Third, as a multivariate analysis, topography offers 

sufficient information to identify the ERP components in a data-driven, automatic way.  

 

That these methods are based on topography also results in a novel segmentation approach. 

These methods are based on the assumption that the response patterns of ERP components are 

consistent throughout the period of activation. This assumption holds in most empirical data. 

Therefore, temporal continuity is enforced in our methods. In comparison, clustering methods do 

not guarantee the temporal continuity and sometimes has to add this constraint by additional 

conditions (Pascual-Marqui, Michel, & Lehmann, 1995). Moreover, because our method is based 

on matrices, the most significant boundary is determined by the topography that maximizes all 

distance with all other topographies. It makes the analysis more resistant to noise and hence 

yields more robust results and may increase internal consistency (Thigpen, Kappenman, & Keil, 

2017).  

 

These advantages of our methods have been demonstrated in the applications when we applied 

our methods on empirical data. First, additional temporal parameters provided insights from a 

new perspective to understand neural mechanisms. For example, our first method successfully 
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identified the onset time of N1, in addition to the peak latency in an auditory attention 

experiment (Zhang, Tao, & Zhao, 2019). The results of peak latency replicated the original 

findings. More importantly, we found that the significant differences among conditions can be 

obtained early in the onset time of N1. These results suggest that the actual differences in 

temporal processing may start in the initiation stage.  

 

Second, dissecting the temporal dynamics from different angles offers new perspectives to 

investigate neural and cognitive theories. For example, our second method estimated the 

temporal variance among trials. This estimation provided evidence suggesting that the observed 

long duration of N400 in a semantic priming experiment was induced by the variation of 

semantic processing speed across trials. Moreover, after reducing the temporal variance by 

aligning individual trials, the more precise estimations of processing duration and response 

magnitude for semantic retrieval were obtained. These results suggest that our methods can 

distinguish whether the observed neural dynamics is caused by cognitive noise across trials or 

the processing speed of a cognitive function. Such precise estimation separates the contribution 

of two sources on the observed neural dynamics in ERPs, which offers a new perspective of 

temporal variance to test neural and cognitive theories (e.g. Milne, 2011). 

 

Third, the automatic detection of temporal indices based on topography overcomes many 

disadvantages in a manual selection based on data in single sensors. In addition to obvious 

advantages such as avoiding subjective bias, free from variation among sensors, and release from 

tedious, repetitive, and error-prone laborious manual procedures, the most important advantage is 

the boost of accuracy and reliability on the identification of temporal indices. For example, in the 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/779546doi: bioRxiv preprint first posted online Sep. 24, 2019; 

http://dx.doi.org/10.1101/779546
http://creativecommons.org/licenses/by-nc-nd/4.0/


original auditory attention study (Zhang, Tao, & Zhao, 2019), the peak latency of the late 

perceptual responses was hard to find, presumably because the temporal overlaps between the P2 

component and the following P300 component. The successive activation of two components 

resulted in the monotonous increase of response magnitude, and hence the local maximum -- the 

response peak was absent (Fig. 2A). Using the topographic pattern as an additional feature, our 

method successfully identified temporal boundary between P2 and P300 and obtained the onset 

time of P300. The onset time of P300 suggests the interaction between auditory attention and 

target location, which is hard to obtain using the response magnitude in sensors. 

 

The two new methods aim to obtain a complete set of temporal indices for investigating the 

neural dynamics in ERP responses. Each method weights on different aspects of temporal 

estimation. We provide a recommended procedure for using these methods. First, determine the 

component(s) of interest. Use the first method to estimate the onset time, peak latency and offset 

time of the component(s) in each condition for each participant. Other temporal indices, such as 

rise and fall speed can be derived from these three primary estimations. After obtaining these 

temporal indices, standard inference statistics can be applied to test specific hypotheses. Second, 

use the second method on the single trials of each condition for each participant. The distribution 

of temporal indices can be obtained for the component(s) of interest. Temporal variance can be 

estimated for each condition in each participant, and standard inference statistics can be applied 

to compare the temporal variance changes by experimental manipulations. Moreover, the 

temporal variance of early perceptual responses (e.g. N1) can be used as a baseline to quantify 

the variance of later components. Furthermore, the new ERP responses can be obtained by 

aligning signal trials. The SNR-boosted response magnitude and more precise temporal indices 
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can be used to further test the research questions. We have implemented the methods in the TTT 

package, an open-source toolbox in Python. The interface of importing and exporting ERP data 

with other Python-based packages are provided, including MNE-Python (Gramfort et al. 2013; 

Gramfort et al. 2014) and EasyEEG (Yang, Zhu, & Tian, 2018). Sample code snippets for 

illustrating the major part of the recommended workflow is included in the supplementary 

materials. More analysis scripts are available at https://github.com/TTT-EEG/TTT-EEG. 

 

Conclusion 

We proposed an analytical framework that includes two new methods to probe the temporal 

characteristics of ERP responses. These methods provide automatic approaches to extract crucial 

temporal information. Moreover, temporal variance across trials can be estimated. These two 

methods fully exploit the fine temporal resolution of non-invasive scalp recordings, which leads 

to a new direction on data analysis to explore neural dynamics and creates a new dimension to 

test neural and cognitive theories. 
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Supplementary materials 
 

import numpy as np 
import mne 
from TTT-EEG import Epoch 
import EasyEEG 
 
 
'''  
Load data from mne or easyeeg 
'''  
 
file_path = './example-data-epo.fif' 
mne_epoch = mne.read_epochs(file_path, verbose = False) 
ttt_epoch = load.from_mne(mne_epoch) 
# EasyEEG_epoch = EasyEEG.io.load 
# ttt_epoch = io.from_EasyEEG(file_path) 
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'''  
Find epoch within the poi 
    1. when interactive = True, a window will pop up,  
       please choose the poi window with the two sliders. 
    2. when interactive = False, please specify the  
       pre-determined pois(`poi_left` and `poi_right`). 
''' 
 
left_poi, right_poi = ttt_epoch.narrow_down_poi(interactive = True) 
# poi_left, poi_right = 150, 230 
# ttt_epoch.narrow_down_poi(interactive = False, poi_left = poi_left, poi_right = poi_right) 
 
 
'''  
Find epoch indices and plot result 
''' 
 
peak, onset, offset, duration, rise_speed, fall_speed = ttt_epoch.find_evolution()  
# peak = ttt_epoch.find_peak() 
# onset, offset = ttt_epoch.find_onset_offset() 
# duration = ttt_epoch.find_duration() 
# rise_speed = ttt_epoch.find_rise_speed() 
# fall_speed = ttt_epoch.find_fall_speed() 
print("Let's make a summary: \n" 
        "preselected window: \t%d, %d ms\n" 
        "peak: \t%d ms\b\n" 
        "onset, offset: \t%d, %d ms\n" 
        "duration: \t%d ms\b\n" 
        "rise speed, fall speed: \t%.3f, %.3f uV/s\n" 
        %(poi_left, poi_right, peak, onset, offset, duration, rise_speed, fall_speed)) 
 
## make a visual summary 
fig, ax = ttt_epoch.visualize_evolution() 
 
 
'''  
Align single trials and plot result 
''' 
 
ttt_aligned_epoch = ttt_epoch.to_AlignedEpoch() 
 
ttt_aligned_epoch.plot_latency_distribution() 
ttt_aligned_epoch.plot_alignment_waveform() 
ttt_aligned_epoch.plot_aligned_topo() 
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SNR_boost = ttt_aligned_epoch.find_SNR_boost() 
print('SNR boost after alignment: %.3f'%(SNR_boost)) 

 

Sample code snippets for illustrating the major part of the recommended workflow 
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