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ABSTRACT
To flexibly convey meaning, the human language faculty iteratively combines smaller units such as
words into larger structures such as phrases based on grammatical principles. During
comprehension, however, it remains unclear how the brain encodes the relationship between
words and combines them into phrases. One hypothesis is that internal grammatical principles
governing language generation are also used to parse the hierarchical syntactic structure of
spoken language. An alternative hypothesis suggests, in contrast, that decoding language during
comprehension solely relies on statistical relationships between words or strings of words, that
is, the N-gram statistics, and no hierarchical linguistic structures are constructed. Here, we briefly
review distinctions between rule-based hierarchical models and statistics-based linear string
models for comprehension. Recent neurolinguistic studies show that tracking of probabilistic
relationships between words is not sufficient to explain cortical encoding of linguistic
constituent structure and support the involvement of rule-based processing during language
comprehension.
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Introduction

It is vigorously debated whether language compre-
hension is driven by rule-based decomposition of hier-
archical syntactic structures (Berwick & Weinberg,
1986; Everaert, Huybregts, Chomsky, Berwick, &
Bolhuis, 2015; Phillips, 2003) or reflects the online
analysis of the statistical relationship between adja-
cent words which obviates the need for abstract struc-
ture building (Elman, 1990; Frank, Bod, & Christiansen,
2012). For rule-based models, the hierarchical struc-
ture of linguistic input sequence must be revealed
via syntactic analysis in order to comprehend spoken
language. N-gram statistics-based models in contrast
propose that the probabilistic relationships between
(typically adjacent) words are sufficient for compre-
hension. Here we briefly discuss the distinctions and
relationships between these two hypotheses and
argue that recent neuroscientific data suggest that
the brain can and does indeed represent hierarchical
linguistic structures, even in the absence of relevant
probabilistic information.

The predictive nature of language processing

It is well established that the brain actively makes predic-
tions which allow quick processing of incoming words
(Dikker, Rabagliati, Farmer, & Pylkkänen, 2010; Marslen-
Wilson & Tyler, 1980; Poeppel, Idsardi, & von Wassen-
hove, 2008; Tanenhaus, Spivey-Knowlton, Eberhard, &
Sedivy, 1995) and which can aid in enriching underspeci-
fied sensory information in challenging listening
environments (Miller, Heise, & Lichten, 1951). For
example, in noisy environments, sentences with higher
transitional probability between words are better recog-
nised than sentences with lower transitional probability
(Miller et al., 1951). Furthermore, when a word in a
highly constrained context is replaced by, say, a cough,
listeners usually feel that they heard the full word on
top of the cough sound (Warren, 1970).

A major motivation of statistical language models is to
characterise how the brain generates predictions of
future words. For an N-gram statistical model (Martin &
Jurafsky, 2008), a future word, W, is predicted based on
the N− 1 words preceding that word, for example,
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W−(N−1) …W−2W−1. Such predictions are based on the
transition probability between the previous N− 1
words and the future word, that is, P(W|W−(N−1)…
W−2W−1), which is estimated based on previous
language experience. Such models have offered success-
ful applications in engineering contexts.

It has been controversial, however, whether N-gram
models are sufficient to describe the human comprehen-
sion system. First, some sentences, although grammati-
cal, have extremely low transition probabilities
between words, as in the famous example coined by
Chjomsky: “colorless green idea sleep furiously”. Such
syntactically correct but very-low predictability (and
usually meaningless) sentences are processed differently
from syntactically incorrect random word lists, as shown
by abundant psycholinguistic and neurolinguistic studies
(Friederici, Meyer, & von Cramon, 2000; Marslen-Wilson &
Tyler, 1980; Pallier, Devauchelle, & Dehaene, 2011). For
example, in a noisy environment, syntactically correct
but semantically anomalous sentences are easier to
recognise than ungrammatical sentences (Miller &
Isard, 1963). Correct syntactic (or phonological) struc-
tures may also facilitate language processing by generat-
ing predictions (DeLong, Urbach, & Kutas, 2005). Such
predictions, however, are based on tacit syntactic (or
phonological) knowledge rather than N-gram transi-
tional probability. For example, an adjective, for
example, “green”, predicts the forthcoming category
noun, even if a low-probability one, such as “ideas”.

Second, the grammars of human languages allow, in
numerous linguistic contexts, long-distance dependen-
cies between words. For example, “you can either read
the first sentence of the first paragraph of the first book
or not read it”. The word “either” predicts the word “or”
but the distance between them could be of any arbitrary
length depending on the number of embedded clauses,
and such long-distance dependencies pose a challenge
for N-gram models. What underlies this problem is that
human language is more complicated that can be
described by an N-gram model (Berwick, Friederici,
Chomsky, & Bolhuis, 2013; Chomsky, 1957; Fitch & Frieder-
ici, 2012). Such long-distance dependencies are very fre-
quent and can also occur in other forms. Consider the
following example: “These insects can digest wood
because… in the morning they really like to eat pine.”
In this case, “pine” is predictable given the context of
the discourse even though the local transitional prob-
ability between “eat” and “pine” is very low. Moreover,
the long-distance dependency between the antecedent
“insects” and the pronoun “they” is regulated by structural
factors (i.e. specific structural, grammatical constraints
exist that licence the interpretation) and not simple
linear word distance.

In summary, an important asset of the N-gram statisti-
cal model is that it can easily generate predictions about
future words and is mathematically approachable.
However, not all aspects of human language processing
can be characterised based on that model. In particular,
the N-gram statistic is not the only source of information
used to make predictions about incoming linguistic
information (Jurafsky, 2003). For example, it cannot
characterise predictions made based on syntactic infor-
mation or discourse-level context. Therefore, the differ-
ence between rule-based hierarchical models and N-
gram models is not whether the brain makes predictions
or whether the brain is sensitive to statistical regularities.
These points are uncontroversial. The crucial difference is
over what kind of linguistic units – hierarchical constitu-
ent structures or linear N-word strings – the brain tracks
statistical regularities and generates predictions (Town-
send & Bever, 2001).

Relationship between statistical models and
rule-based hierarchical models

Although it has been debated whether the brain pro-
cesses language based on statistics or rules, statistics-
based processing and rule-based processing are related
and not mutually exclusive. First, syntactic rules give
rise to statistical cues. On the view that language is gen-
erated based on a set of rules, only some sequences of
words are allowed (and therefore typical and frequent),
that is, the grammatical ones. In daily life, the probability
of being exposed to an ungrammatical sentence is fairly
low and therefore the brain mainly accumulates statistics
based on grammatical sentences. In this set of gramma-
tical sequences, the transitional probability is not equal
between pairs of words and can be learned to facilitate
language processing.

Second, it has been proposed that rules can be
learned based on statistical cues. For example, it has
been shown that 8-month-old infants are sensitive to
the transitional probability between syllables, which
may serve as cues to segment a continuous speech
stream into words (Peña, Bonatti, Nespor, & Mehler,
2002; Saffran, Aslin, & Newport, 1996). Such statistical
learning paradigms can also underpin the learning of
phrasal structures (Thompson & Newport, 2007) and
rules (Marcus, Vijayan, Rao, & Vishton, 1999). The differ-
ence between rules and statistics, however, concerns
the levels of abstraction. For example, after being
exposed to a large number of noun phrases, one may
simply learn the frequency of one word appearing after
another N− 1 words, but one may also abstract a set of
rules, for example, a class of words that can be used to
modify another class of words (Saffran et al., 1996;
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Seidenberg, MacDonald, & Saffran, 2002). Such abstrac-
tion could be an implicit and subconscious process
during language acquisition, while it could also be an
explicit process when learning grammar in school.

Therefore, abstraction/generalisation might be a
potential link between rule-based processing and stat-
istics-based processing (Marcus, 1999; Seidenberg et al.,
2002). Even if considering only statistics-based proces-
sing, generalisation is critical due, for example, to
poverty of stimulus considerations (Chomsky, 1957).
For example, the sentence “university professors never
assign homework” is not a strange sentence – but
most people have never been exposed to this exact sen-
tence. It is not sensible to assume the probability of such
a sentence to be zero just because it has never been
heard/seen. In fact, modern statistical models do not
simply count how many times a sequence of words
appear but instead build models that can generalise
(Pereira, 2000). If the brain is not simply counting word
frequencies but instead makes generalisations, it must
have an internal model about how to make generalis-
ations. Such internal models may not be critically differ-
ent from syntactic or semantic knowledge. One
important question, however, is what kind of generalis-
ation is made by the brain and how abstract, that is,
rule-like, such generalisations are.

One fundamental distinction between rule-based
models and N-gram models is that rule-based linguistic
theories describe the relationship between words using
hierarchical syntactic “chunks”, while N-gram models
by-and-large assume a linear relationship between
words. An N-gram model is not the only model to
describe the statistical regularities in language. More
sophisticated statistical models, such as probabilistic
context-free grammars, assume a hierarchically
embedded phrasal structure and are compatible with
symbolic rules and representations (Chater & Manning,
2006; Hale, 2001). These rule-level or phrasal-level prob-
abilistic models, in contrast with the word-level N-gram
models, are consistent with the particular rule-based
hierarchical structure models we discuss here.

Hierarchical structure building and its neural
correlates

Research on the neural encoding of speech and sound-
sequence processing can shed light on the debate
between rule-based models and N-gram models (Bahl-
mann, Gunter, & Friederici, 2006; Brennan et al., 2012;
Dikker et al., 2010; Fitch & Friederici, 2012; Friederici,
Bahlmann, Friedrich, & Makuuchi, 2011; Pallier et al.,
2011). For example, functional magnetic resonance
imaging studies have shown that rule-based construc-
tion of hierarchical linguistic structures mainly occurs in
the left inferior frontal gyrus, for example, Brodmann
area 44 and temporal areas (Fitch & Friederici, 2012).

Figure 1. Cortical tracking of the linguistic structure of speech.
(a) The grammar of a set of short Chinese sentences in which
the syllables are presented at a constant rate of 4 Hz. The
phrases and sentences are presented at 2 and 1 Hz, respectively,
because of binary embedding of linguistic structures. (b) Neural
response spectrum (global field power) shows peaks at the sylla-
bic rate, phrasal rate, and the sentential rate, demonstrating con-
current neural tracking of three linguistic levels. (c) The grammar
of a set of Artificial Markovian Sentences (AMS). Each sentence
consists of three components, C1, C2, and C3. Each component
is independently chosen from three candidate syllables with
equal probability. The stimulus-onset asynchrony (SOA)
between syllables is a constant, T = 0.3 s. In each trial, 33 sen-
tences are played in a sequence without any gap in between.
(d) Neural response spectrum (global field power) before and
after learning the AMS grammar. Before learning, cortical activity
only tracks the syllabic rhythm of speech. After learning,
however, cortical activity concurrently follows the syllabic
rhythm at 1/T and the sentential rhythm at 1/3 T. Frequency
bins showing power stronger than the mean power of a neigh-
boring 1 Hz region (i.e. 0.5 Hz on each side) are shown by stars
(N = 5, P < .001, paired t-test, false discovery rate corrected)
(adapted from Figure 1 and Supplementary Figure 4 of Ding
et al., 2016).
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In terms of neurophysiological studies, on the one
hand, a large body of literature has demonstrated that
the brain is sensitive to various types of statistical cues,
even without any rule-based structure (Kutas & Federme-
ier, 2000; Näätänen, Paavilainen, Rinne, & Alho, 2007).
Furthermore, statistical learning can also lead to neural
tracking of statistically defined linguistic structures
(Buiatti, Peña, & Dehaene-Lambertz, 2009; Kabdebon,
Pena, Buiatti, & Dehaene-Lambertz, 2015). On the other
hand, there is also neurophysiological evidence for
purely rule-based hierarchical linguistic processing.
Here we briefly review neurophysiological evidence sup-
porting the following two claims.

First, the brain can simultaneously represent hierarch-
ical phrasal structures, that is, syntactic chunks of differ-
ent sizes, resulting in a multi-resolution representation of
the input sequence. For example, it has been shown that
violating discourse-level context evokes the classic N400
response, similar to what is observed when the local sen-
tential context is violated (Van Berkum, Zwitserlood,
Hagoort, & Brown, 2003). This result demonstrates that
the brain can detect a violation of local and global
context within a similar time window, that is, within
half a second after the word onset. This suggests that
brain maintains a representation of both local and
global context which can be promptly retrieved. It is dif-
ficult to explain such a phenomenon using nothing more
than an N-gram model, since modeling the global
context requires integration of tens of words, which is
beyond the limit of human working memory. To consider
another example, it has been shown that, during listen-
ing to spoken language, cortical activity concurrently
follows the rhythms of linguistic structures of different
sizes, for example, words, phrases, and sentences
(Figure 1(a,b)), providing direct evidence for simul-
taneous neural representations of hierarchical linguistic
structures (Ding, Melloni, Zhang, Tian, & Poeppel, 2016).

Second, neural representations of phrasal structures
(i.e. syntactic chunks) can be formed without statistical
cues. Evidence supporting this claim mostly comes
from studies using artificial sequences, which are
parsed based on explicitly instructed rules. The logic is
to show cortical encoding of phrasal chunks in the
absence of any relevant statistical cue, and this is
achieved by explicitly learning the phrasal construction
rules. In one example, to dissociate linguistic structures
from statistical cues, a special Markovian sequence is
constructed in which the transitional probability
between adjacent syllables is constantly 1/3. The Marko-
vian sequence alternates among three states, C1, C2, and
C3 (Figure 1(c)), and the states are independent from one
another. In each state, a syllable will be drawn from three
candidate syllables with equal probability. Each state is

associated with a distinct set of candidate syllables,
and a sequence of three consecutive states, that is,
C1C2C3, is viewed as a sentence. The transitional prob-
ability between syllables, however, is constant within a
sentence or across sentence boundaries.

When listening to such a sequence without any
instruction about the stimulus structure, cortical activity
recorded by magnetoencephalography only follows the
syllabic rhythm (Figure 1(d)). The listeners were then
instructed about the sentential structure and exposed
to stimuli that contained a short gap after C3, which facili-
tates the learning of sentential structures. They were
instructed to memorise the set of syllables belonging
to each state. After this learning phase, when exposed
to the Markovian sequence again, cortical activity track-
ing the sentential structure emerges (Figure 1(d)). This
result demonstrates that the brain can parse learned lin-
guistic structures even in the absence of transitional
probability cues.

Further evidence comes from studies on artificial
musical sequences (Nozaradan, Peretz, Missal, &
Mouraux, 2011). When listening to an isochronous tone
sequence, the listeners were either instructed to listen
to an isochronous sequence (i.e. x x x x x x) or to
imagine a binary (X x X x X x) or ternary metre structure
(X x x X x x). It is observed that cortical activity measured
by electroencephalography only follows the repetition
rate of tones when the listeners were asked to listen to
an isochronous sequence. When asked to imagine a
metre structure, however, additional neural tracking of
the metre structure emerged. Since the metre structure
is imagined, not associated with acoustic or statistical
cues, neural tracking of the metric structure can only
be explained by rule-based processing rather than stat-
istics-based processing. Of course, binary/ternary group-
ing can be described by a Markov model, and so is the
sentential grouping in Figure 1(c,d). Nevertheless, what
is important is that even if such grouping is achieved
by Markovian processes, the processes are based on
rules, not input statistics. The above examples show
that cortical activity can track phrasal structures in the
absence of any statistical cues, providing compelling evi-
dence that the brain can form phrasal-level represen-
tations based on rules.

In summary, word-level input statistics alone are not
sufficient and, in many cases, not necessary to explain
human language processing performance or the neural
responses to language or sound sequences. Input
word-level statistics, however, can trigger the learning
of syntactic rules or other more abstract processing
models. Future research needs to establish what kind
of knowledge is gained during statistical learning and
how abstract it is. If the brain uses input statistics to fit
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an internal language model, it has to be investigated
what kind of model it is. Furthermore, rule-based proces-
sing does not deny that language processing is highly
predictive but assumes that predictions will be made,
among other factors, based on a hierarchically nested
syntactic structure rather than a linear string structure.
Using the paradigm in Figure 1(a,b), future neurophysio-
logical studies can shed light on whether hierarchically
nested structures are constructed online during speech
perception and how deeply embedded the phrasal struc-
ture could be.
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